Convert the following grammar into CNF: $S \rightarrow bA/aB$ $A \rightarrow bAA/aS/a$ $B \rightarrow aBB/bS/a$. **Unit III** Construct PDA from the following Grammar: $S \rightarrow aB$ $B \rightarrow bA/b$ $A \rightarrow aB$ Construct an equivalent PDA for the following CFG: 8 $S \rightarrow aAB|bBA$ $A \rightarrow bS|a$ $B \rightarrow aS|b$. M-18E4

No. of Printed Pages: 05 Roll No.

18E4

B.Tech. EXAMINATION, 2022

(Fifth Semester)

(C-Scheme) (Main & Re-appear)

(CSE)

CSE307C

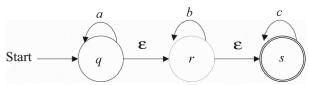
FORMAL LANGUAGES AND AUTOMATA **THEORY**

Time : 3 *Hours*] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least one question from each Unit. All questions carry equal marks.

 $U \rightarrow cU | \Lambda$


 $V \rightarrow aVc|W$

 $W \rightarrow bW | \Lambda$.

Unit I

- 1. (a) Define NFA. What are the differences between DFA and NFA?

 5
 - (b) Convert the following NFA with ϵ moves to DFA without ϵ moves. 5

- (c) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.5
- 2. (a) List out the identities of Regular expression.
 - (b) Construct an equivalent FA for the given regulation expression :

$$(0 + 1)*(00 + 11) (0 + 1)*.$$
 5

(c) Convert the following Mealy machineinto its equivalent Moore machine.

2

Present $I/P = 0$		0	I/P = 1		
State	Next State	O/P	Next State	O/F	
\rightarrow A	C	0	В	0	
В	A	1	D	0	
C	В	1	A	1	
D	D	1_	C	0	

Unit II

- 3. (a) Prove that language $L = \{a^n b^n \mid n > = 1\}$ is not regular pumping lemma with procedure.
 - (b) Write the procedure and eliminate left recursion from the following Grammar: 8
 E → E + T/T
 T → T*F/F
- 4. (a) Simplify the following context free grammar. (Here, Λ stands for epsilon (ϵ)) : 8 S \rightarrow TU|V T \rightarrow aTb| Λ

 $F \rightarrow (E)/id$

6.	(a)	Explain the various types of Turi	ing	6.	(a)	Explain the various types of Turing	
		machine.	7			machine. 7	
	(b)	Explain conversion of regular expressi	ion		(b)	Explain conversion of regular expression	
		to TM with example.	8			to TM with example. 8	
		Unit IV				Unit IV	
7.	(a)	Explain Chomsky hierarchy of language	ges	7.	(a)	Explain Chomsky hierarchy of languages	
		in detail.	7			in detail. 7	
	(b)	Describe context sensitive languages	in		(b)	Describe context sensitive languages in	
		detail.	8			detail. 8	
8.	Writ	e short notes on the following:	15	8.	Write	e short notes on the following: 15	
	(a)	Primitive recursive function			(a)	Primitive recursive function	
	(b)	Myhill-Nerode theorem.			(b)	Myhill-Nerode theorem.	